Assessment Schedule - 2006

Mathematics: Use geometric reasoning to solve problems (90153)

Evidence Statement

	Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Use geometric reasoning to	1	\angle CED = 48° vert opp \angle s = \angle EDC = 59 ° \angle sum \triangle CED = 180°	A	CAO	2 of code A.
nent	solve problems.	2	\angle MLN = 54° alt \angle s =, // lines \angle LMN = 63° \angle sum of isos \triangle LMN = 180°	A	CAO	
Achievement		3	$\frac{AD}{85} = \frac{90}{64}$ \times AAEB similar to \textit{\DC}		Accept any correctly rounded / truncated answer.	Replacement
4			AD = $90 \times 85 \div 64$ = 119.53 $\approx 120 \text{ cm}$	A	CAO	evidence: any correct angle that involves at least two steps of geometric reasoning, in questions 4–7.
	Use, and state, geometric	4	\angle HGF = $360^{\circ} \div 5 = 72^{\circ}$ ext \angle s of reg pentagon \angle EHG = $180 - 72 = 108^{\circ}$ Co-int \angle s, // lines	A/M	Accept other valid chains of reasons.	Achievement plus 2 of code M
	reasons in solving problems.		OR: \angle HGK = $\frac{(5-2)\times180}{5}$ = 108° int \angle s of reg pentagon \angle EHG = 108° Alt \angle s =, // lines EH, FG	A/M	Isosceles trapezium must be established before use	OR 3 of code M.
ərit		5	\angle DBG = 110° vert opp \angle s =, // lines \angle BDE = 180° − 110° = 70° Co-int \angle s are supp, // lines CG, DE \angle DEF = 180° − 70° = 110° Co-int \angle s are supp, // lines DA, EF OR:	A M	Throughout Merit, reasons may be combined in one statement e.g base angles and angle sum of isosceles triangle	Replacement evidence for M: any correct angle with at least two steps of geometric reasoning correctly given, in
Achievement with Merit			\angle DBG = 110° vert opp \angle s = Extend EF to BG at P, forming a parallelogram, \angle DEF = \angle DBG = 110 ° opp \angle s are equal OR:	A/M		question 7.
\chievem			Extend EF to through BG at P to AG at Q then: $\angle BPQ = 110^{\circ}$ Corr opp $\angle s = \%$ lines AD, EQ $\angle DEF = 110^{\circ}$ Corr opp $\angle s = \%$ lines CG, DE OR:	A/M	Proof of Similarity	
		6	Δ DEF similar to Δ CBA (with proof) ∠DEF = 110°	M	must be evident before use	
			$\angle AOD = 180^{\circ} - 2 \times 55^{\circ} = 70^{\circ}$ \angle sum of isos \triangle $\angle AOC = 70^{\circ} + 68^{\circ} = 138^{\circ}$ $\angle ABC = 138^{\circ} \div 2 = 69^{\circ}$ \angle at circ is $I\angle$ at centre	A/M		
			OR: $\angle ADO = 55^{\circ}$ base \angle 's isos $\Delta =$ $\angle CDO = I(180^{\circ} - 68^{\circ}) = 56^{\circ}$ base \angle 's isos $\Delta =$ $\angle ABC = 180^{\circ} - (56^{\circ} + 55^{\circ}) = 69^{\circ}$ Opp \angle 's Cyclic Quad.	A M		
ـــــ	Solve an extended	7		A/M	For code A , angle only is sufficient evidence.	Merit
ievement witl Excellence	geometrical Problem.		$\angle BAE = 2x$ base $\angle s$ isoc $\Delta = (\triangle ABE)$ $\angle AEB = 180^{\circ} - 4x$ $\angle sum \text{ of } \Delta = 180^{\circ}$ OR:	E	For codes M and E, reasons are also	plus code E.
Achievement with Excellence			\angle EBC = $180^{\circ} - 2x$ \angle sum of $\Delta = 180^{\circ}$ \angle ABE = $2x$ \angle 's on a straight line \angle BAE = $2x$ base \angle s isoc $\Delta = (\Delta ABE)$ \angle AEB = $180^{\circ} - 4x$ \angle sum of $\Delta = 180^{\circ}$	A/M E	required. Accept other valid chains of reasons.	

Judgement Statement

Mathematics: Use geometric reasoning to solve problems (90153)

Achievement	Achievement with Merit	Achievement with Excellence	
Use geometric reasoning to solve problems.	Use, and state, geometric reasons in solving problems.	Solve an extended geometrical problem.	
2 × A	Achievement plus	Merit plus	
	2 × M	1×E	
	OR		
	$3 \times M$		